Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]methane

Wei Wei, Zheng-qiang Xia, San-ping Chen* and Sheng-li Gao

College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
Correspondence e-mail: sanpingchen@126.com

Received 23 March 2011; accepted 24 March 2011

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.007 \AA$; R factor $=0.063 ; w R$ factor $=0.108$; data-to-parameter ratio $=13.4$.

The molecule of the title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{~S}_{2}$, lies on a twofold rotation axis that relates on 1-methyltetrazolyl group to the other; the five-membered rings are twisted by 53.1 (1) ${ }^{\circ}$.

Related literature

For the synthesis and pharmacological activity of compounds containing tetrazole groups, see: Semenov (2002); Upadhayaya et al. (2004). For a related structure, see: Bronisz (2002).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{~S}_{2}$
$V=1041.9(7) \AA^{3}$
$M_{r}=244.31$
Orthorhombic, Pbcn
$Z=4$
$a=6.415$ (3) \AA
$b=7.314$ (3) A
$c=22.204(8) \AA$
Mo $K \alpha$ radiation
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.15 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

CBruker SMART area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.930, T_{\text {max }}=0.962$
Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$	70 parameters
$w R\left(F^{2}\right)=0.108$	H -atom parameters constrained
$S=1.21$	$\Delta \rho_{\max }=0.34 \mathrm{e}^{-3}$
936 reflections	$\Delta \rho_{\min }=-0.38 \mathrm{e} \mathrm{A}^{-3}$

4692 measured reflections 936 independent reflections 482 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.118$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge the National Science Foundation of China (No. 20873100) and the Natural Science Foundation of Shaanxi Province (No. SJ08B09).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5140).

References

Bronisz. (2002). Inorg. Chim. Acta, 340, 215-220
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Semenov, B. B. (2002). Russ. Chem. Bull. 51, 357-358.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. \& Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579-592.

supplementary materials

Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]methane

W. Wei, Z. Xia, S. Chen and S. Gao

Experimental

Sodium hydroxide ($1.7 \mathrm{~g}, 0.043 \mathrm{~mol}$) was added to 5-mercapto-1-methyltetrazole ($5 \mathrm{~g}, 0.043 \mathrm{~mol}$) in dry dimethylsulfoxide $(35 \mathrm{ml})$. The reaction mixture was stirred at 363 K for 1 h . Dichloromethane ($3.1 \mathrm{ml}, 0.0215 \mathrm{~mol}$) was then added to the solution dropwise with the formation of a grey suspension. The suspension was stirred for 4 h , cooled to room temperature and filtered. The solvent was removed completely under reduced pressure. The residue was recrystallized from ethanol to give a white crystalline product (2.94 g ; m.p. 353-354 K). Single crystals of the title compound suitable for X-ray diffraction analysis were isolated after a week from a solution in acetone.

Refinement

All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.96 \AA$ for aromatic CH_{3} and $0.97 \AA$ for CH_{2} groups, respectively) and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})$ values set to be -1.5 of the carrier atom.

Figures

Fig. 1. A view of the molecular structure of title compound.

Fig. 2. The crystal packing of the title compound.

Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]methane

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{~S}_{2}$
$M_{r}=244.31$

Orthorhombic, $P b c n$
Hall symbol: -P 2n 2ab
$a=6.415$ (3) \AA
$F(000)=504$
$D_{\mathrm{x}}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{\mathrm{m}}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by not measured
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 214 reflections
$\theta=2.5-18.9^{\circ}$

supplementary materials

$b=7.314(3) \AA$
$c=22.204(8) \AA$
$V=1041.9(7) \AA^{3}$
$Z=4$

Data collection

CBruker SMART area-detector diffractometer

Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.930, T_{\text {max }}=0.962$
4692 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.108$
$S=1.21$

936 reflections
70 parameters
0 restraints
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Flake-like, colourless
$0.15 \times 0.12 \times 0.08 \mathrm{~mm}$

936 independent reflections
482 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.118$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 4$
$l=-25 \rightarrow 26$

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0 . P)^{2}+0.7202 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	$1.1330(2)$	$1.03366(18)$	$0.19301(6)$	$0.0521(4)$	
N3	$0.6134(7)$	$0.9428(6)$	$0.1121(2)$	$0.0590(13)$	

C2	$0.9188(8)$	$0.9782(6)$	$0.1491(2)$	$0.0391(13)$	
N4	$0.7207(7)$	$1.0077(6)$	$0.16107(17)$	$0.0498(12)$	
N1	$0.9358(7)$	$0.8966(6)$	$0.09509(17)$	$0.0463(11)$	
C1	$1.1179(8)$	$0.8355(7)$	$0.0621(2)$	$0.0617(16)$	
H1A	1.1692	0.9336	0.0375	0.093^{*}	
H1B	1.0808	0.7338	0.0369	0.093^{*}	
H1C	1.2242	0.7985	0.0899	0.093^{*}	
N2	$0.7401(8)$	$0.8743(6)$	$0.07305(18)$	$0.0561(13)$	
C3	1.0000	$1.1654(9)$	0.2500	$0.050(2)$	0.50
H3A	1.1011	1.2439	0.2697	0.074^{*}	0.50
H3B	0.8989	1.2439	0.2303	0.074^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0481(9)$	$0.0665(10)$	$0.0418(8)$	$0.0008(8)$	$-0.0041(7)$	$-0.0064(7)$
N3	$0.049(3)$	$0.061(3)$	$0.068(3)$	$-0.006(3)$	$-0.010(3)$	$0.001(3)$
C2	$0.050(4)$	$0.034(3)$	$0.033(3)$	$-0.004(3)$	$-0.002(2)$	$0.004(2)$
N 4	$0.041(3)$	$0.061(3)$	$0.047(3)$	$0.002(2)$	$0.004(2)$	$0.004(2)$
N1	$0.051(3)$	$0.053(3)$	$0.035(2)$	$-0.004(2)$	$-0.003(2)$	$-0.003(2)$
C1	$0.062(4)$	$0.075(4)$	$0.049(3)$	$0.001(3)$	$0.004(3)$	$-0.012(3)$
N2	$0.051(3)$	$0.068(3)$	$0.050(3)$	$-0.004(3)$	$-0.008(3)$	$0.000(2)$
C3	$0.061(6)$	$0.054(5)$	$0.034(4)$	0.000	$-0.012(4)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 2$	$1.734(5)$
$\mathrm{S} 1-\mathrm{C} 3$	$1.805(4)$
$\mathrm{N} 3-\mathrm{N} 2$	$1.289(5)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.372(5)$
$\mathrm{C} 2-\mathrm{N} 4$	$1.316(6)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.343(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.357(5)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 3$	$98.31(19)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4$	$110.6(4)$
$\mathrm{N} 4-\mathrm{C} 2-\mathrm{N} 1$	$109.4(4)$
$\mathrm{N} 4-\mathrm{C} 2-\mathrm{S} 1$	$127.8(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$	$122.8(4)$
$\mathrm{C} 2-\mathrm{N} 4-\mathrm{N} 3$	$105.5(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2$	$107.5(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$130.8(5)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$121.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

Symmetry codes: (i) $-x+2, y,-z+1 / 2$.

N1-C1	1.450 (6)
C1-H1A	0.9600
C1-H1B	0.9600
C1-H1C	0.9600
C3-S1 ${ }^{\text {i }}$	1.805 (4)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
C3-H3B	0.9700
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
N1-C1-H1C	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
N3-N2-N1	107.1 (4)
S1 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{S} 1$	115.5 (4)
S1 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.4
S1-C3-H3A	108.4
S1 ${ }^{\text {i }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.4
S1-C3-H3B	108.4
H3A-C3-H3B	107.5

supplementary materials

Fig. 1

Fig. 2

